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Abstract

There is substantial evidence that both N-methyl-D-aspartate receptor (NMDAR) hypofunction and dysfunction of GABAergic neuro-
transmission contribute to schizophrenia, though the relationship between these pathophysiological processes remains largely
unknown. Although models using cell-type-specific genetic deletion of NMDARs have been informative, they display overly pro-
nounced phenotypes extending beyond those of schizophrenia. Here, we used the serine racemase knockout (SRKO) mice, a model
of reduced NMDAR activity rather than complete receptor elimination, to examine the link between NMDAR hypofunction and
decreased GABAergic inhibition. The SRKO mice, in which there is a >90% reduction in the NMDAR coagonist D-serine, exhibit many
of the neurochemical and behavioral abnormalities observed in schizophrenia. We found a significant reduction in inhibitory synapses
onto CA1 pyramidal neurons in the SRKO mice. This reduction increases the excitation/inhibition balance resulting in enhanced synap-
tically driven neuronal excitability without changes in intrinsic excitability. Consistently, significant reductions in inhibitory synapse den-
sity in CA1 were observed by immunohistochemistry. We further show, using a single-neuron genetic deletion approach, that the loss
of GABAergic synapses onto pyramidal neurons observed in the SRKO mice is driven in a cell-autonomous manner following the de-
letion of SR in individual CA1 pyramidal cells. These results support a model whereby NMDAR hypofunction in pyramidal cells disrupts
GABAergic synapses leading to disrupted feedback inhibition and impaired neuronal synchrony.

NEW & NOTEWORTHY Recently, disruption of excitation/inhibition (E/I) balance has become an area of considerable interest for
psychiatric research. Here, we report a reduction in inhibition in the serine racemase knockout mouse model of schizophrenia
that increases E/I balance and enhances synaptically driven neuronal excitability. This reduced inhibition was driven cell-autono-
mously in pyramidal cells lacking serine racemase, suggesting a novel mechanism for how chronic NMDA receptor hypofunction
can disrupt information processing in schizophrenia.

E/I balance; GABA; inhibition; NMDA receptor; SRR

INTRODUCTION

Schizophrenia is a devastating psychiatric disease charac-
terized by psychosis along with profound cognitive and social
impairments. One prominent and enduring model implicates
hypofunction of N-methyl-D-aspartate receptors (NMDARs)
in the broad symptomatology of schizophrenia (1–4). For
example, open channel NMDAR inhibitors, such as phencycli-
dine (PCP) and ketamine, induce schizophrenia-like symp-
toms in healthy subjects (5, 6), and exacerbate both positive
and negative symptoms in patients with schizophrenia (6–8),

supporting a shared mechanism between NMDAR dysfunc-
tion and schizophrenia pathophysiology. In addition, mice
with low levels of the obligatory GluN1 subunit of NMDA re-
ceptor, so-called GluN1 hypomorphs, display behaviors and
endophenotypes consistent with schizophrenia (9–19).

Another well-supported hypothesis states that schizophre-
nia arises from changes in the ratio of excitatory to inhibitory
activity in the brain (E/I imbalance), specifically through
downregulation of GABAergic inhibition, and may represent
a point of overlap between schizophrenia and autism (20, 21).
Decreases in GABAergic markers in schizophrenia have been
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consistently observed in postmortem tissue (22–27).
Furthermore, decreased GABAergic signaling disrupts oscilla-
tory activity in the brain, particularly c oscillations (28), that
may be important for a variety of cognitive processes (29)
including perceptual binding (30), cognitive flexibility (31),
and attention (32, 33).

In the present study, we evaluated E/I balance in a mouse
model of NMDAR hypofunction associated with the knockout
of serine racemase (SR), the biosynthetic enzyme for the
NMDAR coagonist D-serine (34, 35). In contrast to mouse
models using broad genetic deletion of NMDARs which have
phenotypes extending beyond the bounds of schizophrenia
phenomenology (36), similar to the NMDAR hypomorphmice
which have a severe reduction in NMDAR expression (37–39),
the SR knockout (SRKO) mice provide a more subtle and
potentially physiologically relevant model of NMDAR hypo-
function (35). Indeed, deficiency of D-serine and the subse-
quent hypofunction of NMDARs has been implicated in the
pathophysiology of schizophrenia (40). Genetic studies have
suggested that SR, as well as the degradation enzyme D-amino
acid oxidase (DAAO) and G72, an activator of DAAO, are puta-
tive risk genes for schizophrenia (41–45). In addition, D-serine
levels in the CSF and serum are decreased in individuals with
schizophrenia (46, 47) and supplementation of antipsychotics
with D-serine improves negative and cognitive symptoms in
patients with schizophrenia (48–50). Consistent with well-
characterized hallmarks of schizophrenia, the SRKO mice
have reductions in cortical dendritic complexity and spine
density, reduced hippocampal volume (51, 52), and impaired
performance on cognitive tasks that can be improved with ex-
ogenous D-serine administration (51, 53–55).

Here, we show that SRKO mice also have a significant
reduction in GABAergic synapses onto the soma and apical
dendrites of CA1 pyramidal neurons. This reduction in inhibi-
tion increases the E/I ratio resulting in enhanced synaptically
driven neuronal excitability. Single neuron deletion of SR
revealed that the loss of inhibitory synapses is driven cell-
autonomously by the loss of SR in the pyramidal neurons,
consistent with recent evidence that NMDARs on pyramidal
neurons regulate GABAergic synapse development (56–58).
These results support a model of pyramidal cell NMDAR
hypofunction directly leading to GABAergic dysfunction.

MATERIALS AND METHODS

Animals

The SRKO mice are derived from the floxed SR mice (SRfl),
in which the first coding exon (exon 3) is flanked by loxP sites
as described (53, 59) and are maintained on a C57Bl/6J back-
ground. Mice were group-housed in polycarbonate cages and
maintained on a 12-h light/dark cycle. Animals were given
access to food and water ad libitum. The University of
California Davis Institutional Animal Care and Use Committee
approved all animal procedures.

Slice Preparation

Male SRfl (labeled as WT) and SRKO mice (2- to 3-mo-old)
were deeply anesthetized with isoflurane, followed by cervi-
cal dislocation and decapitation. The brain was rapidly
removed and submerged in ice-cold, oxygenated (95% O2/5%

CO2) artificial cerebrospinal fluid (ACSF) containing (in mm)
as follows: 124 NaCl, 4 KCl, 25 NaHCO3, 1 NaH2PO4, 2 CaCl2,
1.2 MgSO4, and 10 glucose (Sigma-Aldrich). On a cold plate,
the brain hemispheres were separated, blocked, and the hip-
pocampi removed. For extracellular recordings, 400-μm-
thick slices of dorsal hippocampus were cut using a
McIlwain tissue chopper (Brinkman, Westbury, NY). For
whole cell recordings, a modified transverse 300mm slices of
dorsal hippocampus were prepared by performing a �10�

angle blocking cut of the dorsal portion of each cerebral
hemisphere (60) thenmounting the cut side down on a Leica
VT1200 vibratome in ice-cold, oxygenated (95% O2/5% CO2)
ACSF. Slices were incubated (at 32�C) for 20min and then
maintained in submerged-type chambers that were continu-
ously perfused (2–3 mL/min) with oxygenated (95% O2/5%
CO2) ACSF at room temperature and allowed to recover for at
least 1.5–2h before recordings. Just before the start of experi-
ments, slices were transferred to a submersion chamber on
an upright Olympus microscope, perfused with warmed to
30.4�C using a temperature controller (Medical System
Corp.) normal ACSF saturated with 95% O2/5% CO2. For in-
tracellular experiments, the slices were bathed in a modified
ACSF containing 2.4mM KCl.

Extracellular Recordings

Abipolar, nichromewire stimulating electrode (MicroProbes)
was placed in stratum radiatum of the CA1 region and
used to activate Schaffer collateral (SC)-CA1 synapses. For
extracellular recordings, evoked field excitatory postsy-
naptic potentials (fEPSPs) (basal stimulation rate = 0.033
Hz) were recorded in stratum radiatum using borosilicate
pipettes (Sutter Instruments, Novato, CA) filled with ACSF
(resistance ranged from 5–10 MX). To determine response
parameters of excitatory synapses, basal synaptic strength
was determined by comparing the amplitudes of presyn-
aptic fiber volleys and postsynaptic fEPSP slopes for
responses elicited by different intensities of SC fiber stim-
ulation. Presynaptic neurotransmitter release probability
was compared by paired-pulse ratio (PPR) experiments,
performed at 25, 50, 100, and 200 ms stimulation intervals.
Long-term potentiation (LTP) was induced by high-fre-
quency stimulation (HFS) using a 1� tetanus (1 s train of
100Hz stimulation). At the start of each experiment, the
maximal fEPSP amplitude was determined and the inten-
sity of presynaptic fiber stimulation was adjusted to evoke
fEPSPs with an amplitude �30%–40% of the maximal am-
plitude. The mean slope of excitatory postsynaptic poten-
tials (EPSPs) elicited 55–60min after HFS (normalized to
baseline) was used for statistical comparisons. For experi-
ments performed in picrotoxin (PTX, Sigma-Aldrich;
50 mM) the CA3 region was removed. Analyses were per-
formed with the Clampex 10.6 software suite (Molecular
Devices, San Jose, CA) and Prism 9.1 software (GraphPad
Software, San Diego, CA).

Whole Cell Current Clamp Recordings

CA1 pyramidal neurons were visualized by infrared differ-
ential interference contrast microscopy, and current clamp
recordings were performed using borosilicate recording elec-
trodes (3–5 MX) filled with a Kþ -based electrode-filling
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solution containing (in mM) 135 K-gluconate, 5 NaCl, 10
HEPES, 2 MgCl, 0.2 EGTA, 10 Na2-phosphocreatine, 4 Na-
ATP, 0.4 Na-GTP (pH=7.3, 290 osmol/kgH2O). Passive and
active membrane properties of CA1 pyramidal cells were
determined using three 500ms current pulses 10s apart.
Current injections were first recorded in increasing order (i.
e., 0, 25, 50, 75, 100, 125, 150, and 200pA) and then in
decreasing order. Values obtained from the responses eli-
cited by the same current injection were averaged. For input
resistance, 500ms current steps of 0 to �200pA were
injected in �20pA increments. Steady-state responses were
measured as the average change in voltage in the last 100ms
of the pulse. The slope of a regression line fitted to the volt-
age versus current data was used to calculate input resist-
ance. Sag currents were measured during the 100pA
hyperpolarizing steps and calculated as the initial voltage
trough minus the steady-state voltage change. Firing fre-
quency versus injected current was measured as the number
of spikes per 500ms step in 25pA increments from 0 to
200pA. Rheobase was determined by injecting 0.5ms square
pulses in 2pA steps and recording the strength of the first
pulse to elicit an action potential. Spike firing threshold and
action potential height were calculated by injecting a 2ms
square pulse of 1.8nA. To measure the E/I ratio from CA1 py-
ramidal neurons, current clamp recordings at holding poten-
tial of �60mV were made in the absence of synaptic
blockers. E/I ratio was calculated from averaged baseline
subtracted traces as the maximum depolarization amplitude
(in mV) divided by the maximum hyperpolarization ampli-
tude in the 300ms after the stimulus. Synaptically mediated
excitability was determined with short trains of synaptic
stimulation (5 pulses at 100Hz SC fiber stimulation) with the
CA1 pyramidal neurons at holding potential of �60mV in
the absence of synaptic blockers. For both the E/I ratio and
stimulation trains, the stimulus strength was adjusted so
that the initial PSP depolarization�5mV.

Whole Cell Voltage Clamp Recordings

CA1 pyramidal neurons were visualized by infrared differen-
tial interference contrast microscopy, and voltage-clamp
recordings were performed using borosilicate glass recording
pipettes (3–5MX) filled with a Csþ -based electrode-filling solu-
tion containing (in mM): 135 Cs-methanesulfonate, 8 NaCl, 5
QX314 (Sigma-Aldrich), 0.3 EGTA, 4Mg-ATP, 0.3 Na-GTP, and
10 HEPES (pH=7.3, 290 osmol/kgH2O). Evoked inhibitory
postsynaptic currents (IPSCs; eIPSCs), spontaneous IPSCs
(sIPSCs), and miniature IPSCs (mIPSCs) were recorded in pres-
ence of DL-2-amino-5-phosphonovaleric acid (APV) and 2,3-
dioxo-6-nitro-7-sulfamoyl-benzo[f]quinoxaline (NBQX) (Tocris;
50 mM and 10mM respectively) to block AMPAR and NMDAR
currents. Miniature excitatory postsynaptic currents (EPSCs;
mEPSCs) were recorded in the presence of 100mM PTX and
1mM tetrodotoxin (TTX; Alomone Laboratories, Jerusalem,
Israel) to block action potential-dependent neurotransmitter
release, whereas mIPSCs were recorded in presence of 1mM
TTX alone. The outward IPSCs were completely blocked by
PTX (50mM). For the input/output (I/O) curves of eIPSCs, the
stimulus intensity of the threshold evoked response was first
determined and then stimulation was increased to develop the
I/O curves. Recordings where series resistance was�25 MX or

unstable were discarded. Series resistance compensation was
used in all voltage-clamp recordings except in experiments
examining miniature postsynaptic currents. All recordings
were obtained with a MultiClamp 700B amplifier (Molecular
Devices), filtered at 2kHz, and digitized at 10Hz. Analysis was
performed with the Clampex 10.6 software suite and GraphPad
Prism 9.1.

Single Neuron SR Deletion Experiments

Neonatal [P0] SRfl mice of both sexes were stereotaxically
injected with a low-titer rAAV1-Cre:GFP viral stock (�1 � 1012

vg/mL) targeting hippocampal CA1 as previously described
(61, 62), resulting in very sparse transduction of CA1 pyrami-
dal cells. At 2–3mo, the injected mice were anesthetized
with isoflurane and transcardially perfused with ice-cold ar-
tificial cerebrospinal fluid (ACSF), containing (in mM) 119
NaCl, 26.2 NaHCO3, 11 glucose, 2.5 KCl, 1 NaH2PO4, 2.5 CaCl2,
and 1.3 MgSO4. Modified transverse 300mm slices of dorsal
hippocampus were prepared by performing a �10� angle
blocking cut of the dorsal portion of each cerebral hemi-
sphere (60) then mounting the cut side down on a Leica
VT1200 vibratome in ice-cold cutting buffer. Slices were
incubated in 32�C NMDG solution containing (in mM) 93
NMDG, 93 HCl, 2.5 KCl, 1.2 NaH2PO4, 30 NaHCO3, 20 HEPES,
25 glucose, 5 sodium ascorbate, 2 thiourea, 3 sodium pyru-
vate, 10 MgSO4, and 0.5 CaCl2 (63) for 15 min, which we have
previously used to increase cell health in slices from older
animals (64). Slices were transferred to room temperature
ACSF and held for at least 1h before recording. All solutions
were vigorously perfused with 95% O2 and 5% CO2. Slices
were transferred to a submersion chamber on an upright
Olympus microscope, perfused in room temperature ACSF,
and saturated with 95% O2 and 5% CO2. CA1 neurons were
visualized by infrared differential interference contrast mi-
croscopy, and GFPþ cells were identified by epifluorescence
microscopy. Cre expressionwas generally limited to the hippo-
campus within a sparse population of CA1 pyramidal neurons.
Cells were patched with 3–5 MX borosilicate pipettes filled
with intracellular solution containing (in mM) 135 cesium
methanesulfonate, 8 NaCl, 10 HEPES, 0.3 Na-GTP, 4Mg-ATP,
0.3 EGTA, and 5 QX-314 (Sigma, St. Louis, MO), and mIPSCs
were recorded at 0mV in the presence of 50mM APV, 10mM
NBQX, and 0.5mM TTX. Series resistance was monitored and
not compensated, and cells were discarded if series resistance
varied more than 25%. Recordings were obtained with a
Multiclamp 700B amplifier (Molecular Devices, Sunnyvale,
CA), filtered at 2kHz, and digitized at 10Hz. Analysis was per-
formed with the Clampex 10.6, MiniAnalysis, and GraphPad
Prism 9.1 (GraphPad Software, San Diego, CA).

Immunohistochemistry

Male C57Bl/6J, SRfl (labeled as WT) and SRKO mice (2-
to 3-mo-old) were deeply anesthetized with isoflurane and
injected with a lethal dose of Fatal Plus (Vortech
Pharmaceuticals) pentobarbital solution. The mice were
then perfused transcardially with 1�PBS followed by 4%
paraformaldehyde (PFA; Electron Microscopy Sciences) in
1�PBS. Brains were removed and postfixed for 3 h in 4%
PFA in 1�PBS. The fixed brains were then cryoprotected
stepwise, first in 10% sucrose in 1�PBS overnight, then in
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30% sucrose in 1�PBS overnight. Brains were then
mounted and frozen in O.C.T. compound (Tissue-Tek).
Coronal sections through the dorsal hippocampus were cut on
a Leica CM3050 S cryostat at 10mm and collected onto
Superfrost Plus slides (Thermo Fisher Scientific). Sections
were outlined with a hydrophobic barrier pen and all subse-
quent incubation steps were performed in a humidified cham-
ber. The sections were blocked with 10% normal donkey
serum in 1�PBS-T (0.5% Triton X-100) for 1h at room tempera-
ture and then probed overnight with rabbit anti-VGAT anti-
body (Synaptic Systems, Cat. No. 131 003, 1:500) in blocking
solution at 4�C. The next day sections were rinsed 3 times with
1�PBS-T and then incubated with secondary antibody (don-
key anti-rabbit 647, Jackson, Cat. No. 711-605-152, 1:400) in 1-
�PBS-T for 90 min at room temperature. The sections were
then rinsed 3 times with 1�PBS-T and counterstained with
DAPI. The sections were thenmountedwithMowoilmounting
medium and covered with a glass coverslip. Wild-type and
SRKO slices were prepared and stained in parallel. After dry-
ing, a series of images covering the hippocampus were col-
lected on a Nikon C2 LSMwith a Nikon CFI Apo Lambda 60�
1.4NA oil objective. Laser and PMT settings remained constant
between individuals and genotypes. Single images covering
the regions of interest were stitched in together in Nikon
Elements software. Regions of interest of the stratum pyrami-
dale or stratum radiatum of hippocampal CA1 were analyzed
using custom-written journals (65) in Metamorph software
(v7.5, Molecular Devices) to identify and quantify VGAT
puncta density and intensity. Constraints for puncta identifi-
cation is semiautomated with the output visually inspected
and calibrated to capture the majority of punctal signal while
removing artifacts. Two regions of interest for both stratum
pyramidale or stratum radiatum were analyzed for each of
three individual animals per genotype. Data were graphed and
analyzed using GraphPad Prism 9.1 (GraphPad Software, San
Diego, CA). Unpaired Student’s t tests were used to test for
statistically significant differences between genotypes.

Statistical Analysis

Statistical comparisons were made with Student’s unpaired
t test or two-way ANOVA with Bonferroni’s multiple compari-
sons test as specified and appropriate, using GraphPad Prism
9.1 (GraphPad Software, SanDiego, CA). Spontaneous andmin-
iature inhibitory synaptic events were analyzed using Mini
Analysis software (Synaptosoft, Fort Lee, NJ). Peaks of events
were first automatically detected by the software according to
a set threshold amplitude of 6pA. To generate cumulative
probability plots for both amplitude and interevent time inter-
val, the same number of events (50–200 events acquired after
an initial 3min of recording) from each CA1 pyramidal neuron
was pooled for each group, and input into the Mini Analysis
program. The Kolmogorov–Smirnov two-sample statistical test
(KS test) was used to compare the distribution of spontaneous
andminiature events betweenWT and SRKOmice.

RESULTS

Increased E/I Balance in CA1 Pyramidal Cells in SRKOMice

To investigate the properties of excitatory synaptic trans-
mission in the SRKO mice, we first conducted extracellular

field recordings of SC-CA1 synapses in the SRKO mice.
Consistent with previous studies (52), the basal excitatory
synaptic strength, determined by comparing the amplitudes
of presynaptic fiber volleys and fEPSP slopes for responses
elicited by different intensities of SC fiber stimulation
(input-output curve), was unaltered in SRKO compared with
WT slices (Fig. 1A, P = 0.49, two-way ANOVA, F(1,122) =
0.467). We next examined the input-output (I/O) function of
evoked monosynaptic IPSCs through stimulation in the stra-
tum radiatum in the presence of 10mM NBQX and 50mM
AP5. We found a significant decrease in monosynaptic inhi-
bition onto CA1 pyramidal neurons in SRKO mice compared
with WT (Fig. 1B, P = 0.0001, two-way ANOVA, F(1,224) =
58.90; Bonferroni’s multiple comparisons test, �P < 0.05).
This difference was characterized by a downward shift in the
I/O curve showing the relationship between eIPSC amplitude
and stimulus intensity. There was also no change in paired-
pulse ratio (PPR) of the fEPSPs in the SRKO mice compared
with WT mice (Fig. 1C, P = 0.91, two-way ANOVA, F(1,23) =
0.012), which together with unaltered change in basal excita-
tory synaptic strength suggests that there is no alteration of
excitatory neurotransmission or presynaptic glutamate
release probability in the SRKOmice. PPR of eIPSCs was also
unchanged in SRKO mice compared with WT mice (Fig. 1D,
P = 0.82, unpaired t test, t(34) = 0.230), suggesting that the
reduction in inhibitory currents is not due to a change in the
probability of GABA release. Using whole cell current clamp
recordings, we next examined the impact of the reduction in
synaptic inhibition in the SRKO on the E/I ratio in CA1 py-
ramidal neurons by recording compound EPSP/inhibitory
excitatory postsynaptic potentials (IPSPs) at holding poten-
tial of �60mV using current injection upon SC stimulation.
For this experiment, the peak depolarization of the PSP was
set to �5mV (WT: 5.2 ±0.1mV, n = 15; SRKO: 5.1 ±0.1, n = 20,
P = 0.343, unpaired t test, t(33) = 0.96) to draw out the inhibi-
tory component of compound EPSP/IPSPs (Fig. 1E). We
found a significant reduction in the IPSP component of the
compound EPSP/IPSP (Fig. 1E, peak IPSP amplitude, P =
0.0008, unpaired t test, t(33) = 3.71). This decrease in IPSP
amplitude results in an increased E/I ratio (Fig. 1E, E/I ratio,
P = 0.0026, unpaired t test, t(33) = 3.26). Together, these
results suggest that a selective GABAergic impairment in the
SRKOmice leads to an increase in the E/I balance.

Enhanced Pyramidal Cell Excitability to Synaptic
Stimulation in SRKOMice

Synaptic inhibition plays a key role in synaptic integration
and spike initiation in neurons (66). Indeed, at hippocampal
SC-CA1 synapses, EPSP-spike potentiation, an enhancement
of spike probability in response to a synaptic input of a
fixed slope, is dependent on changes in GABAergic inhibi-
tion (67). Thus, in the SRKO mice, we examined EPSP-
spike coupling using short trains of SC stimulation (5
pulses at 100Hz). Stimulation intensity was adjusted for
each neuron to normalize the initial subthreshold EPSP to
�5mV. We found a significantly increased probability of
spiking in SRKO CA1 pyramidal cells compared to WT (Fig.
2A, P < 0.0001, two-way ANOVA, F(1,150) = 31.4), espe-
cially for the second, fourth and fifth stimulus (���P =
0.0001, Bonferroni’s multiple comparisons test, F(150) =
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4.34; ��P = 0.004, Bonferroni’s multiple comparisons test,
F(150) = 3.41; �P = 0.013, Bonferroni’s multiple compari-
sons test, F(150) = 3.07, respectively). Post hoc analysis of
the data in Fig. 2A showed a correlated increase in tempo-
ral summation (Fig. 2B). Here, the peak PSP amplitude was
measured after each stimulus, excluding data after the cell
fired its first action potential. The differing number of data
points precluded statistical analyses but this qualitative
analysis supports an increase in temporal summation

from the reduction in inhibition in the SRKO CA1 pyrami-
dal cells. Importantly, there were no differences in the
intrinsic excitability of CA1 pyramidal cells between SRKO
and WT mice (Fig. 2C, Table 1). We analyzed the number of
spikes elicited during 500ms steps of somatically injected
current and found no significant differences in the number
of spikes between WT and SRKO neurons at steps of any in-
tensity (Fig. 2C, P = 0.759, two-way ANOVA, F(8,207) = 0.621).
There were also no significant differences in the resting
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membrane potential, input resistance (Fig. 2D), rheobase,
action potential threshold or height, or sag amplitude
between the CA1 neurons of WT and SRKO mice (Table 1).
Together, these data suggest that a reduction in inhibitory

input onto CA1 pyramidal neurons in the SRKO mice
increases the E/I balance resulting in enhanced synaptically
driven neuronal excitability without changes in intrinsic exc-
itability.

Figure 1. Increased excitation/inhibition (E/I) ratio in SRKOmice. A: left, view through the upright Olympus microscope of hippocampal slice with stimulat-
ing electrode (left) and recording electrode (right) in stratum radiatum. Middle, representative sample traces of extracellular field recordings for WT and
SRKO; scale bars: 0.5mV, 5 ms. Normal basal synaptic transmission as measured by presynaptic fiber volley amplitudes and postsynaptic field EPSP
(fEPSP) slopes for responses elicited by different intensities of Schaffer collateral (SC) fiber stimulation in WT (n = 10) and SRKO (n = 10) hippocampal slices
(P = 0.49, two-way ANOVA, F(1,122) = 0.467). B: Left, view through the upright Olympus microscope of hippocampal slice with stimulating electrode (left)
in stratum radiatum and patch-clamp recording electrode (right) in the CA1 pyramidal cell layer. Middle, representative sample traces of evoked IPSC
fromWT and SRKOCA1 pyramidal cells at holding potential of 0mV: scale bars: 100pA, 200 ms. Input-output function of evoked IPSC amplitude vs. stim-
ulating current strength show a significant decrease in inhibition in SRKOmice (P = 0.0001, two-way ANOVA, F(1,224) = 58.90; Bonferroni’s multiple com-
parisons test; WT n = 17, SRKO n = 17). C: paired-pulse ratio is unchanged at SRKO SC-CA1 synapses compared with WT (P = 0.91, two-way ANOVA,
F(1,23) = 0.012; WT: n = 12, SRKO: n = 13). Inset, traces represent fEPSPs evoked by stimulation pulses delivered with a 25-, 50-, 100-, and 200-ms inter-
pulse interval; scale bars: 0.5mV, 50ms. D: paired pulse ratio of IPSCs at a 50-ms interpulse interval (WT: 1.056 ±0.049, n = 12; SRKO: 1.076±0.057,
n =24) indicating that there is no change in the probability of inhibitory neurotransmitter release from presynaptic terminals. Right, representative traces
of evoked IPSCs from WT and SRKO CA1 pyramidal cells; scale bars: 50pA, 50 ms. E: Left, overlaid traces of compound excitatory (EPSP) and inhibitory
(IPSP) postsynaptic potentials evoked by SC stimulation in absence of synaptic blockers at holding potential of�60mV from SRKO (red) and WT (black)
mice; dashed line indicates the baseline; scale bars: 2mV, 100 ms. Peak PSP depolarization was set to approximately 5mV for each cell. Peak IPSP am-
plitude is significantly decreased in SRKO mice compared with WT mice (P = 0.0008, unpaired t test, t(33)=3.71, WT: 1.5 ±0.1mV, n = 15; SRKO: 1.0 ±0.1,
n =20). The E/I ratio in CA1 pyramidal cells calculated from EPSP and IPSP peak amplitudes is greater in SRKO mice compared with WT (P = 0.0026,
unpaired t test, t(33)=3.26, WT: 3.7 ±0.2,n = 16; SRKO: 5.5 ±0.4, n =20). Data represent means ± SE. EPSP, excitatory postsynaptic potential; IPSC, inhibi-
tory postsynaptic current; IPSP, inhibitory postsynaptic potential; SRKO, serine racemase knockout; WT, wild type. �P< 0.05, ��P< 0.01, ���P< 0.001.
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Loss of Picrotoxin-Induced Disinhibition during LTP in
SRKOMice

In hippocampal SC-CA1 field LTP experiments induced
with a HFS (e.g., 100Hz tetanus), the addition of a GABAA in-
hibitor (e.g., PTX) causes a disinhibition that enhances LTP
(Fig. 3A, P = 0.0002, unpaired t test, t(26) = 4.38) (68).
Because of the reduced inhibition observed in the SRKO
mice, we hypothesized that PTX-induced disinhibition
might be disrupted. Consistently, we found that, in hippo-
campal slices from the SRKO mice, the addition of PTX
(50mM) did not affect the magnitude of LTP induced with a
single 100Hz tetanus (Fig. 3B, P = 0.394, unpaired t test, t
(21) = 0.871). Interestingly, comparing data between WT and
SRKO slices, we only observed significantly different LTP in
the presence of PTX (P = 0.046, unpaired t test, t(22) = 2.11).
In the absence of PTX, there was no difference in LTP
between WT and SRKO slices (P = 0.623, unpaired t test, t
(25) = 0.498), likely due to baseline disinhibition in the SRKO
slices. Thus, by removing the impact of the reduced inhibi-
tion in the SRKO slices, the addition of PTX provides a
more direct measure of the impact of synaptic NMDAR
hypofunction in LTP, consistent with previous studies (52,
53, 59, 69, 70).

Reduced Inhibitory Synapses Onto CA1 Pyramidal
Neurons of SRKOMice

To examine the source of the reduced GABAergic inhibi-
tion in the SRKO mice, we recorded spontaneous IPSCs
(sIPSC) from CA1 pyramidal cells (Fig. 4, A–C). There were
no significant differences in sIPSC amplitude between SRKO
and WTmice (Fig. 4A, P = 0.138, unpaired t test, t(34) = 1.42),
though sIPSC frequency was significantly reduced (Fig. 4B,
P = 0.006, unpaired t test, t(34) = 2.96). Similarly, mIPSC
(Fig. 4, D–F) frequency was significantly reduced in CA1 py-
ramidal cells from the SRKO mice compared with WT (Fig.
4E, P = 0.0003, unpaired t test, t(23)=4.29). There was also a
small decrease in mIPSC amplitude in the SRKO neurons
(Fig. 4D, P = 0.042, unpaired t test, t(23) = 2.15). These results
suggest that there is a significant reduction of inhibitory syn-
apses onto CA1 pyramidal neurons in the SRKO mice.
Though there were no apparent differences in the I/O of exci-
tatory responses at SC-CA1 synapses (Fig. 1A), evoked and

spontaneous neurotransmission may be distinct (71). Thus,
we also examined sEPSCs and mEPSCs from CA1 pyramidal
neurons (Fig. 5). We found no significant differences
between cells from WT and SRKO mice in sEPSC amplitude
(Fig. 5A, P = 0.79, unpaired t test, t(22) = 0.259), sEPSC fre-
quency (Fig. 5B, P = 0.47, unpaired t test, t(22) = 0.732), or
mEPSC frequency (Fig. 5D, P = 0.70, unpaired t test, t(26) =
0.383). There was a small, significant increase in mEPSC am-
plitude in the SRKO cells (Fig. 5E, P = 0.016, unpaired t test, t
(26) = 2.57) that appeared to be most at larger amplitude syn-
apses. Overall, these results, combined with Fig. 1, suggest
that fast excitatory neurotransmission is largely normal in
CA1 pyramidal cells from the SRKOmice.

The reduced frequency of mIPSCs (Fig. 4E), in the absence
of apparent changes in presynaptic release probability (Fig.
1D), suggests a reduction in the number of GABAergic synap-
ses onto CA1 pyramidal neurons in the SRKO mice. We then
confirmed this synaptic reduction using immunohistochem-
istry (Fig. 6) by staining for the vesicular GABA transporter
(VGAT) in hippocampal slices. Consistent with a reduction
of synapses from PVþ interneurons, which form periso-
matic synapses onto CA1 pyramidal cells, there was a signifi-
cant reduction of VGAT density (Fig. 6, A and B, left, P =
0.028, unpaired t test, t(4) = 3.36) and intensity (Fig. 6, A and
B, right, P = 0.042, unpaired t test, t(4) = 2.95) in the CA1 py-
ramidal cell layer in the SRKO mice compared with WT.
Similarly, in the stratum radiatum, there was a nonsignifi-
cant reduction in VGAT density (Fig. 6, C and D, left, P =
0.092, unpaired t test, t(4) = 2.21) and a significant decrease
in VGAT intensity (Fig. 6, C and D, right, P = 0.024, unpaired
t test, t(4) = 3.53), that was evenly distributed throughout the
stratum radiatum (Fig. 6E) suggesting a broader GABAergic
synapse deficit. Taken together with the significant reduc-
tion in mIPSC frequency, these results suggest that a loss of
GABAergic synapse density in the hippocampus underlies
the increased E/I ratio in the SRKOmice.

Deletion of SR from CA1 Pyramidal Neurons Results in a
Cell-Autonomous Reduction in GABAergic Synapses

Early studies suggested that D-serine is exclusively synthe-
sized and released by astrocytes (34, 72, 73), leading to the
classification of D-serine as a gliotransmitter (74–76). More
recent studies, using the SRKO mice as controls, have

Table 1. Intrinsic excitability in wild-type and SRKO CA1 pyramidal neurons

Property Wild Type (n = 12) SRKO (n = 13) Student’s t Test (unpaired) P Value

RMP, mVa 60.6 ± 0.5
[�65 to �55]

�60.8 ± 0.5
[�65 to �55]

t(48) = 0.34 0.736

Rinput, MΩ 174.6 ± 13.0
[97.7 to 235.8]

154.0 ± 9.9
[89.4 to 219.3]

t(23) = 1.27 0.216

Sag, mVb �0.20 ±0.001
[�0.17 to �0.24]

�0.22 ±0.01
[�0.14 to �0.26]

t(23) = 1.27 0.219

Rheobase, pA 15.1 ± 5.1
[2.7 to 59.3]

25.2 ± 4.8
[2.7 to 70.2]

t(23) = 1.45 0.159

AP threshold, mVb 49.2 ± 0.8
[�44.3 to �52.7]

�50.4 ± 0.6
[�44.8 to �53.1]

t(23) = 1.19 0.247

AP height, mV 120.9 ± 2.3
[105 to 140]

120.9 ± 1.7
[110 to 134]

t(23) = 0.01 0.989

AHP peak, mV �2.79 ±0.4
[�5.75 to �0.845]

�1.60 ±0.3
[�3.74 to �0.46]

t(23) = 2.35 0.028�

Means ± SE [range]. aFor RMP: wild-type n = 27, SRKO n = 23. bJunction potential not adjusted. AHP, afterhyperpolarization; AP, action
potential; Rinput, input resistance; RMP, resting membrane potential; SRKO, serine racemase knockout; �P < 0.05.
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strongly supported a predominantly neuronal localization
(53, 77–84). Furthermore, in agreement with previous studies
in cultured neurons (85, 86), we recently reported that SR
localizes to the apical dendrites and the post-synaptic den-
sity in situ in hippocampal CA1 pyramidal neurons and
regulates postsynaptic NMDARs (64). Importantly, while
conditional knockout (cKO) of SR from astrocytes has mini-
mal impact on SR levels, cKO from CaMKIIa-expressing fore-
brain glutamatergic neurons results in�65% reduction of SR
expression in the cortex and hippocampus (59). The remain-
der of SR expression is thought to be from GABAergic inter-
neurons. As such, we sought to determine if the decrease in
GABAergic synapses onto CA1 pyramidal neurons in the
SRKO mice was due to the loss of SR in the pyramidal cells
themselves. We utilized a single-neuron genetic approach in
the SRfl mice in which SR was removed in a sparse subset of
CA1 pyramidal neurons by neonatal stereotaxic injection
of adeno-associated virus, serotype 1 expressing a Cre

recombinase GFP fusion protein (AAV1-Cre:GFP) (Fig. 7A).
This mosaic transduction allows for whole-cell recordings
from Cre-expressing (Cre) and untransduced neurons (Ctrl)
(Fig. 7B) providing a measurement of the cell-autonomous
effects of SR deletion. Similar to the SRKO mice (Fig. 4), we
found no differences in mIPSC amplitude (Fig. 7C, P = 0.939,
unpaired t test, t(19) = 2.022), but significantly reduced
mIPSC frequency (Fig. 7D, P = 0.039, unpaired t test, t(19) =
2.218) in Cre-expressing CA1 pyramidal neurons compared to
control neurons. These results suggest that cKO of SR from
CA1 pyramidal neurons results in a cell-autonomous reduc-
tion in GABAergic synapses.

DISCUSSION
Broad NMDAR deletion causes overly pronounced pheno-

types that do not adequately model schizophrenia (36).
Germline deletion of NMDARs from mice is perinatally
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lethal (87–89) and embryonic deletion from only forebrain
pyramidal neurons results in death within the first month
(90–92). Similarly, mice with a homozygous embryonic dele-
tion of NMDARs from migrating forebrain GABAergic neu-
rons expressing the Dlx5/6 promoter (93), are reportedly
nonviable (36). Moreover, broad and regional deletion of
NMDARs severely disrupts cortical patterning during devel-
opment (88, 90). The NMDAR hypomorph mice (9), which
have only 5%–10% of wild-type NMDAR expression, have
been hailed as a major transgenic model of the NMDAR
hypofunction in schizophrenia (94), though they have also
been highly criticized for having more global cognitive
impairments with earlier onset than what is seen in schizo-
phrenia (37–39). Interestingly, decreases in NMDAR protein
is not a consistent finding in schizophrenia (95), suggesting
that the hypofunction may be more functional (e.g., down-
stream signaling) than structural (96). Indeed, NMDARs are
macromolecular machines (97) involved in a plethora of sig-
naling processes in neurons and complete loss of NMDARs
could lead to a broad range of allostatic changes. In this
study, we used a mouse model of NMDAR hypofunction that
involves a functional rather than structural reduction in
NMDAR activity, the SRKO mice (53). In the SRKO mice,
there is a >90% decrease in the levels of D-serine, the pri-
mary coagonist for synaptic NMDARs in the forebrain (53,
98). Indeed, deficiency of D-serine and the subsequent
hypofunction of NMDARs has been implicated in the

pathophysiology of schizophrenia (40) and the SRKO mice
displaymany well-characterized hallmarks of schizophrenia,
including reductions in dendritic complexity and spine den-
sity (51, 52, 99) and impaired performance on various cogni-
tive tasks (52, 53).

Using the SRKO mice, we have explored the relationship
between NMDAR hypofunction and GABAergic inhibition.
Because interneurons expressing the calcium-binding pro-
tein parvalbumin (PVþ ) are particularly affected in schizo-
phrenia (46, 100, 101), previous studies have examined PV
expression in the SRKOmice. Although one study reported
a 26% reduction in PVþ cells in the anterior cingulate cor-
tex of the SRKO mice (102), another found no change in PV
immunoreactivity in the hippocampus, prelimbic and
infralimbic cortices (103). However, using electrophysio-
logical approaches in ex vivo hippocampal slices we found
a significant reduction of GABAergic synapses onto CA1
pyramidal neurons in the SRKO mice. This reduction of
GABAergic synaptic inhibition onto pyramidal cells
increases the E/I balance resulting in enhanced synapti-
cally driven neuronal excitability.

Consistent with previous studies, baseline excitatory
transmission and presynaptic release probability were
largely preserved in the SRKO mice (52, 53). Surprisingly, we
found normal levels of LTP in the SRKOmice, which initially
seemed to be counter to previous studies (52, 53, 59, 69, 70).
In each of those studies, however, inhibition was blocked
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Figure 4. Reduced spontaneous GABAergic synaptic transmission in SRKO mice. A–C: spontaneous IPSCs (sIPSCs) from CA1 pyramidal cells. A: the cumula-
tive distribution of sIPSC amplitude indicated larger amplitudes in SRKO compared with WT (KS test, P < 0.0001), though the mean amplitude of sIPSCs are
unchanged between slices fromWT and SRKO mice (WT: 16.41 ±0.708, n= 18; SRKO: 17.66±0.414, n= 18; P = 0.138). B: the cumulative probability (KS test, P<
0.0001) of interevent intervals reveals a shift toward longer intervals and the mean frequency of sIPSCs was significantly decreased in SRKO compared to WT
cells (WT:6.55±0.38Hz, n= 19; SRKO:4.80±0.45Hz, n= 18; P = 0.006). C: sample sIPSC traces from WT (black) and SRKO (red) mice; scale bars: 25pA and
0.5s. D–F:miniature IPSCs (mIPSCs) from CA1 pyramidal cells. D: the cumulative distribution (KS test, P < 0.0001) and mean amplitude of mIPSC were signifi-
cantly reduced in SRKO compared with WT mice (WT: 15.45±0.43pA, n= 13; SRKO: 14.23±0.36pA, n= 12; P = 0.042). E: the cumulative distribution (KS Test,
P< 0.0001) of interevent intervals and the mean frequency of mIPSCs are significantly decreased in SRKO compared with WT cells (WT: 6.79±0.54Hz, n= 13;
SRKO: 3.69±0.47Hz, n= 12; P = 0.0003). F: sample mIPSC traces from WT (black) and SRKO (red) mice; scale bars: 25pA and 0.5s. Data represent means ±
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with picrotoxin. Indeed, in the presence of picrotoxin, we
also observed a clear reduction in LTP due to the isolation of
the NMDAR hypofunction in the SRKO mice. These results
also suggested a loss of picrotoxin-induced disinhibition in
the SRKO mice which we show is due to a reduction in
GABAergic synapses onto CA1 pyramidal neurons in the
SRKO mice. We speculate that this reduction of inhibitory
synapses and the resulting increase in E/I ratio in the SRKO
mice represents a homeostatic compensation to normalize
synaptic plasticity. This is similar to recent work in four au-
tism models where the increases in E/I ratio were demon-
strated to be homeostatic changes (104), though in that
study there was a stabilization of synaptic drive and spiking
by a coordinated decrease in excitatory conductance (104).
In contrast, we observed increased synaptically-driven spik-
ing in ex vivo slices from the SRKOmice along with generally
normal excitatory responses. These differences may repre-
sent disparate compensatory demands and homeostatic
mechanisms in the cortical layer 2/3 neurons examined in
the autism mutants (104) compared with the CA1 pyramidal
cells studied here. Importantly, even with the increase in E/I
ratio, no epileptiform activity has been reported in the SRKO
mice during in vivo electrophysiology nor reported or
observed seizure activity (105–107), and one study reported
that the SRKO mice had a reduced susceptibility to seizures
(108). The lack of apparent seizure activity with the increase
E/I ratio further suggests concurrent homeostatic processes,

though we cannot rule out covert temporal lobe epileptiform
bursting in the SRKO mice. Furthermore, other compensa-
tory mechanisms could contribute to the normalization of
LTP in the SRKOmice, including an increase in hippocampal
glycine levels (109), and an increased in synaptic GluN2B
(53, 64). Overall, these homeostatic changes suggest that
there is a prioritization of synaptic and cellular functions
over network function resulting in a disruption of the signal-
to-noise ratio and impairing cognition. Indeed, SRKO
mice display impairments in task-elicited gamma power,
enhanced background broadband gamma activity, sensory
gating impairments, working memory deficits (106), and dis-
ruptions in the auditory steady-state response (107), together
supporting an aberrant signal-to-noise ratio impairing cogni-
tive function.

We further show, using a single-neuron genetic deletion
approach, that the loss of GABAergic synapses onto pyrami-
dal neurons observed in the SRKOmice is driven in a cell-au-
tonomous manner following the deletion of SR in individual
CA1 pyramidal cells. Indeed, recent studies have shown a
critical role for NMDARs on pyramidal neurons in regulating
GABAergic synapse development (56–58). Specifically, dele-
tion of the obligatory GluN1 subunit of NMDARs from single
CA1 pyramidal cells in early development leads to a signifi-
cant reduction in mIPSC frequency and a loss of GABAergic
synapses (57). Importantly, a similar loss of GABAergic
synapses upon GluN1 deletion was observed in layer 2/3
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Figure 5.Normal spontaneous excitatory synaptic transmission in SRKOmice. A–C: spontaneous EPSCs from CA1 pyramidal cells. A: the cumulative proba-
bility and mean of sEPSC amplitudes were not significantly different between SRKO and WT mice (KS Test, P > 0.05; WT: 14.88±0.56pA, n= 12;
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unchanged (WT: 4.74 ±0.68Hz, n= 12; SRKO: 5.59±0.95Hz, n= 12; P = 0.472). C: sample sEPSC traces from WT (black) and SRKO (red) mice; scale bars:
25pA and 0.5 s. D–F: miniature EPSCs from CA1 pyramidal cells. D: cumulative probability (KS Test, P< 0.0001) and mean amplitude of mEPSCs were sig-
nificantly changed between SRKO andWTmice (WT: 13.24±0.54pA, n= 14; SRKO: 14.89±0.34pA, n= 14; P = 0.016). E: the cumulative probability (KS test, P>
0.05) of interevent intervals and mean frequency of mEPSCs were not significantly different between SRKO andWT mice (WT: 0.770±0.084Hz, n= 14; SRKO:
0.812±0.072Hz, n= 14; P = 0.705). F: sample mEPSC traces from WT (black) and SRKO (red) mice; scale bars: 25 pA and 0.5 s. Data represent means
± SE. EPSC, excitatory postsynaptic current; KS test, Kolmogorov–Smirnov test; SRKO, serine racemase knockout; WT, wild type. �P < 0.05.
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pyramidal neurons in the motor cortex and midbrain dopa-
minergic neurons in the ventral tegmental area (58), suggest-
ing a more generalizable mechanism. This work builds upon
older pharmacological studies showing that NMDAR activity
can accelerate GABAergic synapse development (110–113).

Interestingly, NMDARs have been found to co-localize with
GABAA receptors at GABAergic synapses in the developing
brain (114–116), though the function of this localization
remains unclear. Here, the Cre-expressing virus was injected
within 24h after birth and the stochastic loss of the gene is
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n = 3; P = 0.024). E: representative images of
hippocampal CA1 show that the reduction in
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Data represent means ± SE. SRKO, serine
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thought to be complete by 4–5days (117), followed by loss of
the mRNA and protein. This time course overlaps with in-
hibitory synapse formation, so it remains to be determined if
there is disrupted synaptogenesis or a loss of formed or
maturing inhibitory synapses. However, these results to-
gether support a model whereby NMDAR hypofunction on
pyramidal neurons can lead to GABAergic dysfunction
through a loss of GABAergic synapses.

The cellular location of the NMDAR hypofunction in
schizophrenia has been intensely studied yet remains poorly
understood. A large body of pharmacological studies using
uncompetitive NMDAR antagonists support a locus of
NMDAR hypofunction on cortical GABAergic interneurons,
particularly PV positive cells (46, 100, 101). Notably, acute
systemic administration of NMDAR antagonists results in
the increased activity of cortical pyramidal neurons (118,
119), spillover of cortical glutamate (120, 121), and increases
in cortical c power (122, 123), indicative of increased E/I bal-
ance and pyramidal cell disinhibition. Similar evidence for
increased cortical excitability following administration of
NMDAR antagonists have been found in human studies (7,
124–126). These findings are consistent with the increase in
E/I balance and disinhibition we observe here in the SRKO
mice and in another recent study (109); however, NMDAR

antagonists are thought to preferentially inhibit receptors on
fast-spiking PV-positive interneurons (127).

Cell-type-specific knockouts of GluN1 from either pyrami-
dal neurons or PVþ interneurons have provided additional
insights into the locus of NMDAR hypofunction in schizo-
phrenia. For example, deletion of GluN1 from PVþ inter-
neurons leads to cortical and hippocampal disinhibition and
an increase in the baseline gamma power in the hippocam-
pus (128–131). In addition, acute MK801-induced behaviors
were not detected in these mice (129), providing decisive evi-
dence for PVþ interneurons being the locus of NMDAR
hypofunction upon systemic NMDAR antagonist adminis-
tration in adult rodents. Behaviorally, these mice have selec-
tive impairments in working memory, habituation, and
sociability, but display normal pre-pulse inhibition (PPI)
(128, 129, 132). Importantly, because PV-selective promoter
expression, and thus NMDAR removal, begins at 2–4wk of
age (129, 130, 132, 133), these mice may not fully model the
neurodevelopmental changes occurring in schizophrenia.

Similarly, mice with a deletion of GluN1 from forebrain
pyramidal neurons using the CaMKII promoter display a va-
riety of schizophrenia-related phenotypes, including reduc-
tions in social interaction, nest-building, and spatial working
memory (134, 135). Interestingly, there was also an increase
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representative image of the sparse transduction of
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by DAPI. Scale bar indicates 100μm. B: schematic of
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knockout; WT, wild type. �P< 0.05.
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in locomotor activity in the CaMKII-Cre/GluN1 KOmice con-
sistent with dopaminergic models of psychosis (135, 136).
Similar to our results, CA1 pyramidal cell excitability was
increased along with increased broadband local field poten-
tial power in the CaMKII-Cre/GluN1 KO mice (135); however,
this was an increase in intrinsic excitability attributable to a
reduction in GIRK2 channel activity, rather than due to the
loss of synaptic inhibition seen here. Furthermore, no
changes in mRNA levels were found in the hippocampus for
the GABAergic markers GAD67, PV, cholecystokinin, and so-
matostatin (135), suggesting a lack of effects on inhibition.
Importantly, the CaMKII promoter drives GluN1 deletion in
these mice beginning at 3–4wk of age in CA1 pyramidal neu-
rons which then spreads more broadly throughout the fore-
brain by 4mo (137). Thus, as with the deletion of GluN1 from
PVþ interneurons, these mice may not recapitulate the de-
velopmental aspects of NMDAR hypofunction.

Consistent with a reduction in synapses from PVþ basket
cells, we found a significant reduction in perisomatic VGAT
puncta density and intensity in the CA1 pyramidal cell layer.
However, the density and intensity of VGAT puncta were also
decreased in the stratum radiatum with no apparent proxi-
mal-distal differences along the apical dendrites of CA1 py-
ramidal neurons, supporting a broad reduction of GABAergic
synapses. Indeed, while PVþ interneurons are particularly
affected in schizophrenia (46, 100, 101), multiple interneuron
subtypes have been implicated (100, 138–140) and hippocam-
pal inhibitory networks appear especially sensitive to
NMDAR hypofunction (141, 142). Interestingly, the decreases
in VGAT puncta density and intensity were more extensive
than the reductions in mIPSC frequency and amplitude. This
difference may be methodological or a sampling bias, but
may also represent changes in VGAT expression that are not
linearly correlated with postsynaptic responsiveness.

Overall, our data suggest that a pyramidal cell locus of
synaptic NMDAR hypofunction could lead to GABAergic def-
icits through the impaired development of feedback inhibi-
tory synapses. Additional studies will be needed to elucidate
the molecular mechanisms underlying the role of NMDARs
in GABAergic synapse development and to ascertain the
relationship between inhibitory synapses on pyramidal neu-
rons and endophenotypes in schizophrenia.
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